Use of AQIX® Medium in the Literature

  1. Abazari, A., et al. (2017) Biopreservation Best Practices: A Cornerstone in the Supply Chain of Cell-based Therapies–MSC Model Case Study. Cell & Gene Therapy Insights. 853-871. DOI: 10.18609/cgti.2017.082
  2. Bartlett, R., et al.(2016) A novel protocol to characterise the mechanical properties of spinal cord tissue and benchmark candidate biomaterials for CNS tissue-engineering. European Cells and Materials. (Suppl. 1) (P8).
  3. de Boisferon, M.H., et al. (2013) Poster Abstract: Development program of patient tumor tissue bank to support the drug and target discovery. AACR; Cancer Research. 73(8 Suppl): abstract # 2785. doi:10.1158/1538-7445.AM2013-2785
  4. Deckers, E.A. (2014) The effect of Hemarina on renal injury in a warming-up AQIX perfused rat kidney model. Master Theses UMCG (University of Groningen).
  5. De Witte, S.F.H, et al. (2017) Aging of bone marrow–and umbilical cord–derived mesenchymal stromal cells during expansion. 19(7): 798-807.
  6. De Witte, S.F.H., et al. (2017) Cytokine treatment optimises the immunotherapeutic effects of umbilical cord-derived MSC for treatment of inflammatory liver disease. Stem Cell Research & Therapy, 8:140. org/10.1186/s13287-017-0590-6
  7. Elliott, S., et al. (2011) Poster: A new technique for assessing renal graft perfusion pre-operatively using contrast enhanced ultrasound (CEUS)–A porcine model viability study.
  8. Fleck, T., et al. (2008) Management of open chest and delayed sternal closure with the vacuum assisted closure system: preliminary experience. Interactive Cardiovascular & Thoracic Surgery. 7(5): 797-804. org/10.1510/icvts.2008.177527
  9. Franze, E., et al. (2013) Lesional accumulation of CD163-expressing cells in the gut of patients with inflammatory bowel disease. PLOS One. 8(7). org/10.1371/journal.pone.0069839
  10. Gwiggner, M., et al. (2018) MicroRNA-31 and MicroRNA-155 are overexpressed in ulcerative colitis and regulate IL-13 signaling by targeting interleukin 13 receptor α-1. 9(2): 85.
  11. Hosgood, S.A., et al. (2015) Normothermic machine perfusion of the kidney: better conditioning and repair? Transplant International. 28: 657-664. org/10.1111/tri.12319
  12. Hosgood, S.A., et al. (2017) (Book) Chapter 8 - Ex-vivo Normothermic Perfusion in Renal Transplantation. Kidney Transplantation, Bioengineering and Regeneration. Kidney Transplantation in the Regenerative Medicine Era, 101-109. org/10.1016/B978-0-12-801734-0.00008-4
  13. Hoyer, D.P., et al. (2015) Poster Abstract: Acellular normothermic machine preservation of liver grafts with Aqix® RS-I Solution: P131. Transplant International. 28 (Suppl. 4): page 370, abstract # P131. doi/epdf/10.1111/tri.12702
  14. Ilie, M., et al. (2015) Setting up a wide panel of patient‐derived tumor xenografts of non–small cell lung cancer by improving the preanalytical steps. Cancer Medicine. 4(2): 201-211. org/10.1002/cam4.357
  15. Jia, J.J., et al. (2015) Influence of perfusate on liver viability during hypothermic machine perfusion. World Journal of Gastroenterology. 21(29): 8848–8857. doi: 3748/wjg.v21.i29.8848
  16. Jochmans, I., et al. (2015) Hypothermic machine perfusion of kidneys retrieved from standard and high‐risk donors. Transplant International. 28(6): 665-676. org/10.1111/tri.12530
  17. Kaminski, J., et al. (2019) Poster Abstract: Early Functional Recovery Of Ischemic Porcine Kidneys Perfused Ex Vivo With Autologous Whole-blood, After Normothermic Preservation With Improved AQIX® RS-I Solution - Comparison To Oxygenated Hypothermic Machine Preservation. Transplant International. 32 (Suppl. S1): page 21, abstract # O67. doi/epdf/10.1111/tri.13379
  18. Kay, M.D., et al. (2006) Static normothermic preservation of renal allografts using a novel nonphosphate buffered preservation solution. Transplant International. 20(1): 88-92. org/10.1111/j.1432-2277.2006.00390.x
  19. Kay, M.D., et al.(2011) Normothermic Versus Hypothermic Ex Vivo Flush Using a Novel Phosphate-Free Preservation Solution (AQIX) in Porcine Kidneys. Journal of Surgical Research. 171 (1): 275–282. org/10.1016/j.jss.2010.01.018
  20. Kibondo, A., et al. (2010) Perfusates: Their properties and usage for the maintenance and storage of organs for transplantation. Current Anaesthesia & Critical Care. 21 (5–6): 216-219. org/10.1016/j.cacc.2010.03.008
  21. Liu, Q., et al. (2007) Can apparent diffusion coefficient discriminate ischemic from nonischemic livers? A pilot experimental study. Transplantation Proceedings. 39(8): 2643-2646. org/10.1016/j.transproceed.2007.08.003
  22. Liu, Q., et al. (2014) Assessing warm ischemic injury of pig livers at hypothermic machine perfusion. Journal of Surgical Research. 186(1): 379-389. org/10.1016/j.jss.2013.07.034
  23. Kofanova, O.A., et al. (2014) Viable mononuclear cell stability study for implementation in a proficiency testing program: Impact of shipment conditions. Biopreservation and Biobanking. 12(3). org/10.1089/bio.2013.0090
  24. Maruyama, Y., and Chambers, D.J. (2008) Myocardial protection: efficacy of a novel magnesium-based cardioplegia (RS-C) compared to St Thomas’ Hospital cardioplegic solution. Interactive Cardiovascular & Thoracic Surgery. 7(5): 745-749. org/10.1510/icvts.2008.181057
  25. Medina-Rodríguez, E.M., et al. (2013) Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans. PLOS One. 8(11) org/10.1371/journal.pone.0081620
  26. Minor, T., et al. (2017) Role of temperature in reconditioning and evaluation of cold preserved kidney and liver grafts. Current Opinion in Organ Transplant. 22(3): 267–273. doi: 1097/MOT.0000000000000402
  27. Minor, T., et al. (2018) Role of erythrocytes in short‐term rewarming kidney perfusion after cold storage. Artificial Organs. 43(6): 584-592. org/10.1111/aor.13403
  28. Miranda, A.C.M., et al. (2018) Inhibitory Effect on Biofilm Formation of Pathogenic Bacteria Induced by Rubrolide Lactam Analogues. ACS Omega. 3(12): 18475-18480. org/10.1021/acsomega.8b02334
  29. Moss, E., et al. (2010) A novel system for the investigation of microvascular dysfunction including vascular permeability and flow-mediated dilatation in pressurised human arteries. Journal of Pharmacological & Toxicological Methods. 62(1): 40-46. org/10.1016/j.vascn.2010.04.008
  30. Mownah, O.A., et al.(2014) Development of an ex vivo technique to achieve reanimation of hearts sourced from a porcine donation after circulatory death model. Journal of Surgical Research. 189(2): 326–334. org/10.1016/j.jss.2014.02.041
  31. Nassar, A., et al. (2012) Poster Abstract: Establishing a liver ex-vivo normothermic perfusion model: Lessons learned. Transplant International 25 (Suppl. 1): page 31, abstract # P31-0062. doi/epdf/10.1111/j.1432-2277.2012.01479.x
  32. Noormohamed, M.S., et al. (2013) Extracorporeal membrane oxygenation for resuscitation of deceased cardiac donor livers for hepatocyte isolation. Journal of Surgical Research. 183(2): e39-e48. org/10.1016/j.jss.2013.03.026
  33. Schreiber, D., et al.(2014) Motility patterns of ex vivo intestine segments depend on perfusion mode. World Journal of Gastroenterology. 20(48): 18216–18227. DOI:
  34. Vekemans, K., et al. (2009) Hypothermic liver machine perfusion with EKPS-1 solution vs Aqix RS-I solution: in vivo feasibility study in a pig transplantation model. Transplantation Proceedings. 41(2): 617-621. org/10.1016/j.transproceed.2008.12.022
  35. Vekemans, K., et al. (2011) Attempt to rescue discarded human liver grafts by end ischemic hypothermic oxygenated machine perfusion. Transplantation Proceedings. 43(9): 3455-3459. org/10.1016/j.transproceed.2011.09.029
  36. von Horn, C., et al.(2017) Controlled oxygenated rewarming up to normothermia for pretransplant reconditioning of liver grafts. Clinical Transplantation. 31(11), [13101]. org/10.1111/ctr.13101
  37. von Horn, C., et al.(2018) Cold flush after dynamic liver preservation protects against ischemic changes upon reperfusion - an experimental study. Transplant International. 32(2): 218-224. org/10.1111/tri.13354
  38. Wei, Y., et al. (2008) Vascular perfused segments of human intestine as a tool for drug absorption. Drug Metabolism & Disposition.37(4):731-6. org/10.1124/dmd.108.023382

Use of Chick Embryo Extract (CEE) in the Literature

  1. Beurg, M., et al. (1999) Differential Regulation of Skeletal Muscle L-type Ca2+ Current and Excitation-contraction Coupling by the Dihydropyridine Receptor Beta Subunit. Biophys. J., 76(4): 1744-1756.
  2. Bultynck, G., et al. (2001) Characterization and Mapping of the 12kda Fk506-binding Protein (Fkbp12)-binding Site on Different Isoforms of the Ryanodine Receptor and of the Inositol 1,4,5-trisphosphate Receptor. Biochem. J., 354: 413-422.
  3. Christman, S. A., et al. (2005) Chicken Embryo Extract Mitigates Growth and Morphological Changes in a Spontaneously Immortalized Chicken Embryo Fibroblast Cell Line. Poultry Science, 84(9):1423–1431.
  4. Erbay, E. and Chen, J. (2001) The Mammalian Target of Rapamycin Regulates C2C12 Myogenesis via a Kinase-Independent Mechanism. J. Biol. Chem., 276(39): 36079-36082.
  5. Hagiwara, Y., et al. (1981) Chick Embryo Extract, Muscle Trophic Factor and Chick and Horse Sera as Environments for Chick Myogenic Cell Growth. Develop., Growth and Differ., 23(3): 249-254 doi:10.1111/j.1440-169X.1981.00249.x
  6. Hennige, A. M., (2008) Fetuin-A Induces Cytokine Expression and Suppresses Adiponectin Production. PLoS One, 3(3): e1765 doi: 10.1371/journal.pone.0001765.
  7. Jat, P.S., et al. (1991) Direct Derivation of Conditionally Immortal Cell Lines from an H-2Kb-Tsa58 Transgenic Mouse. PNAS, 88(12): 5096-5100.
  8. Kessler, P.D., et al. (1996) Gene Delivery to Skeletal Muscle Results in Sustained Expression and Systemic Delivery of a Therapeutic Protein. PNAS, 93(24): 14082-14087.
  9. Krützfeldt, J., et al. (2000) Insulin Signalling and Action in Cultured Skeletal Muscle Cells From Lean Healthy Humans With High and Low Insulin Sensitivity. Diabetes, 49(6): 992-998.
  10. Lecce, J. G., et al. (1953) Chick Embryo Extract, an Enrichment for Certain Strains of Pleuropneumonia Like Organisms Isolated from Man. J. Bacteriol., 66(5): 622–623.
  11. Kita, K., et al. (1998) Influence Of Chicken Embryo Extract On Protein Synthesis Of Chicken Embryo Depends On Cell Density. AJAS, 11(6): 713-717.
  12. Mann, C.J., et al. (2001) Antisense-Induced Exon Skipping and Synthesis of Dystrophin in the Mdx Mouse. PNAS, 98(1): 42-47.
  13. Morgan, J.E., et al. (1994) Myogenic Cell Lines Derived from Transgenic Mice Carrying a Thermolabile T Antigen: A Model System for the Derivation of Tissue-Specific and Mutation-Specific Cell Lines. Dev Biol., 162(2): 486-498.
  14. Mu, X., et al. (2013) Chick Embryo Extract Demethylates Tumor Suppressor Genes in Osteosarcoma Cells. Clin Orthop Relat Res., [Epub ahead of print]
  15. Muses, S., et al. (2011) A New Extensively Characterised Conditionally Immortal Muscle Cell-Line for Investigating Therapeutic Strategies in Muscular Dystrophies. PLoS One, 6(9): e24826 doi: 10.1371/journal.pone.0024826.
  16. Pajtler, K., et al. (2010) Production of Chick Embryo Extract for the Cultivation of Murine Neural Crest Stem Cells. J. Vis. Exp. (45), e2380, doi:10.3791/2380.
  17. Slater, C.R. (1976) Control of Myogenesis In Vitro by Chick Embryo Extract. Dev. Biol., 50(2): 264–284.
  18. Stefan, N., et al. (2007) Genetic Variations in PPARD and PPARGC1A Determine Mitochondrial Function and Change in Aerobic Physical Fitness and Insulin Sensitivity during Lifestyle Intervention. J. Clin. Endocrinol. Metab., 92(5): 1827– 1833.
  19. Suzuki, K., et al. (2001) Intracoronary Infusion of Skeletal Myoblasts Improves Cardiac Function in Doxorubicin-Induced Heart Failure. Circulation, 18:104 (12 Suppl 1) I213-I217 doi: 10.1161/ hc37t1.094929.
  20. Turbow, M.M. (1966) Trypan Blue Induced Teratogenesis of Rat Embryos Cultivated In Vitro. J. Embryo. Exp. Morphol. 15(3): 387-395.
  21. Weigert, C., et al. (2004) Palmitate, but Not Unsaturated Fatty Acids, Induces the Expression of Interleukin-6 in Human Myotubes through Proteasome-dependent Activation of Nuclear Factor-κB. J. Biol. Chem., 279(23): 23942–23952.
  22. Yablonka-Reuveni, Z. (1995) Myogenesis in the Chicken: The Onset of Differentiation of Adult Myoblasts is Influenced by Tissue Factors. Basic and Applied Myology, 5(1):33.
  23. Zimmermann, W. H., et al. (2002) Tissue Engineering of a Differentiated Cardiac Muscle Construct. Circ. Res,. 90(2): 223-230 doi: 10.1161/hh0202.103644.

Use of Human AB Serum in the Literature

  1. Cánovas, D., and Bird, N., (2012) Letter: Human AB serum as an alternative to fetal bovine serum for endothelial and cancer cell culture. Altex, 29(4): 426-428.
  2. Chimenti, I., et al. (2014) Serum and supplement optimization for EU GMP-compliance in cardiospheres cell culture. J. Cell. Mol. Med. 18(4): 624–634.
  3. Dahl, J. A., et al. (2008) Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. Int. J. Dev. Biol., 52(8): 1033–1042.
  4. Jung, S., et al. (2012) Ex Vivo expansion of human mesenchymal stem cells in defined serum-free media. Stem Cells Int., 2012 Article ID 123030, doi:10.1155/2012/123030.
  5. Kocaoemer, A., et al. (2007) Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of Mesenchymal Stem Cells from adipose tissue. Stem Cells, 25(5): 1270-1278.
  6. Le Blanc, K., et al. (2007) Generation of immunosuppressive Mesenchymal Stem Cells in allogeneic Human Serum. Transplantation, 84(8): 1055-1059.
  7. Lindroos, B., et al. (2010) Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Eng. Part A, 16(7): 2281-2294, DOI: 10.1089/ten.tea.2009.0621.
  8. Paloni, A., et al. (2009) Selection of CD271+ cells and human AB serum allows a large expansion of mesenchymal stromal cells from human bone marrow. Cytotherapy, 11(2): 153-162.
  9. Qasim, W., et al. (2017) Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine. 9(374), DOI: 10.1126/scitranslmed.aaj2013
  10. Shahdadfar, A., et al. (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells, 23(9): 1357–1366.
  11. Stute, N., et al. (2004) Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp. Hematol., 32(12): 1212–1225.

Application of hPL in the Literature

  1. Astori, G., et al. (2016) Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Research & Therapy. 7:93
  2. Azouna, N. B., et al. (2012) Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res Ther., 3(1):6.
  3. Barsotti, M. C., et al. (2013) Effect of platelet lysate on human cells involved in different phases of wound healing. PLOS, 8(12): e84753.
  4. Bieback, K., et al. (2009) Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cell, 27(9):2331-2341.
  5. Burnouf, T., et al. (2012) Human blood-derived fibrin releasates: Composition and use for the culture. Biologicals, 40: 21-30.
  6. Burnouf, T., et al. (2016) Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials, 76: 371-387.
  7. Capelli, C., et al. (2007) Human Platelet Lysate allows expansion and clinical grade production of mesenchymal stromal cells from small samples of bone marrow aspirates or marrow filter washouts. Bone Marrow Transplant, 40(8):785-791.
  8. Castegnaro, S., et al. (2011) Effect of platelet lysate on the functional and molecular characteristics of mesenchymal stem cells isolated form adipose tissue. Curr Stem Cell Res Ther., 6(2):105-114.
  9. Cholewa, D., et al. (2011) Expansion of adipose mesenchymal stromal cells is affected by human platelet lysate and plating density. Cell Transplant, 20(9):1409-1422.
  10. Doucet, C., et al. (2005) Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol., 205(2):228-236.
  11. Fazzina, R., et al. (2015) Culture of human cell lines by a pathogen-inactivated human platelet lysate. Cytotechnology, DOI 10.1007/s10616-015-9878-5.
  12. Fekete. N., et al. (2012) Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identificaton of active components. Cytotherapy, 2012; 14(5):540-554.
  13. Govindasamy, V., et al. (2011) Human platelet lysate permits scale-up of dental pulp stromal cells for clinical applications. Cytotherapy, 13(10):1221-1233.
  14. Hemeda, H., et al. (2013) Heparin concentration is critical for cell culture with human platelet lysate. Cytotherapy, 15(9):1174-1181.
  15. Hemeda, H., et al. (2014) Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy, 16(2):170-180.
  16. Henschler, R., et al. (2019) Human platelet lysate current standards and future developments. Transfusion, 9999;1–7. DOI: 10.1111/trf.15174
  17. Horn, P., et al. (2010) Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy, 12(7):888-898.
  18. Naaijkens, B.A.,et al. (2012) Human platelet lysate as a fetal bovine serum substitute improves human adipose-derived stromal cell culture for future cardiac repair applications. Cell Tissue Res., 348(1):119-130.
  19. Rauch, C., et al. (2011) Alternatives to the use of fetal bovine serum: Human platelet lysates as a serum substitute in cell culture media. ALTEX, 28(4):305-316.
  20. Rauch, C., et al (2014) Human Platelets successfully replace fetal bovine serum in adipose-derived adult stem cell culture. J Advanced Biotech & Bioengineeing, 2 (1).
  21. Ruggiu, A., et al. (2013) The effect of Platelet Lysate on osteoblast proliferation associated with a transient increase of the inflammatory response in bone regeneration. Biomaterials, 34: 9318-9330.
  22. Schallmoser, K., et al. (2007) Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion, 47(8):1436-1446.
  23. Schallmoser, K., and Strunk, D. (2009) Preparation of Pooled Human Platelet Lysate (pHPL) as an Efficient Supplement for Animal Serum-Free Human Stem Cell Cultures. Journal of Visualized Experiments,
  24. Strandberg, G., et al. (2016) Standardizing the freeze-thaw preparation of growth factors from platelet lysate. Transfusion DOI:10.1111/trf.13998
  25. Suri, K., et al. (2014) Patelet Lysate as replacement for fetal bovine serum in limbal stem cell cultures: Preliminary results. Investigative Ophthalmology & Visual Science, 55: 511.
  26. Trojahn Kølle, S.F., et al. (2013) Pooled human platelet lysate versus fetal bovine serum-investigating the proliferation rate, chromosome stability and angiogenic potential of human adipose tissue-derived stem cells intended for clinical use. Cytotherapy, 15(9):1086-1097.
  27. Walenda, G., et al. (2012) Human platelet lysate gel provides a novel three dimensional-matrix for enhanced culture expansion of mesenchymal stromal cells. Tissue Eng Part C Methods, 18(12):924-934.

Alternatives to FBS in the literature

  1. Paranjape, S. (2004) Goat serum: an alternative to fetal bovine serum in biomedical research. Indian J Exp Biol. 42(1):26-35.
  2. Dessels, C., et al. (2016) Making the Switch: Alternatives to Fetal Bovine Serum for Adipose-Derived Stromal Cell Expansion. Front Cell Dev Biol. 4:115

FBS in the Literature

  1. Brown, S., et al (2018) Gamma Irradiation of Animal Serum: Maintaining the old Chain Throughout the Process. Bioprocessing J. Trends & Developments in Bioprocess Technology 17
  2. Cheever, M., Master, A., & Versteegen, R. (2017) A Method for Differentiating Fetal Bovine Serum from Newborn Calf Serum. Bioprocessing J. Trends & Developments in Bioprocess Technology 16.
  3. Croonenborghs, B., et al. (2016) Gamma Irradiation of Frozen Animal Serum: Dose Mapping for Irradiation Process Validation. Bioprocessing J. Trends & Developments in Bioprocess Technology. 15(3).
  4. Davis, D., and Drake Hirschi, S. (2014) Fetal Bovine Serum: What You Should Ask Your Supplier and Why. BioProcessing J. Trends & Developments in BioProcess Technology. 13 (1): 19-21
  5. Hawkes, P.W. (2015) Fetal bovine serum: geographic origin and regulatory relevance of viral contamination. Bioresources and Bioprocessing. 2(34):
  6. Nielsen, O. B., and Hawkes P. W. (2019) Fetal Bovine Serum and the Slaughter of Pregnant Cows: Animal Welfare and Ethics. BioProcessing J. Trends & Developments in Bioprocess Technology. 18
  7. Plavsic, M., et al. (2016) Gamma Irradiation of Animal Serum: Validation of Efficacy for Pathogen Reduction and Assessment of Impacts on Serum Performance. BioProcessing J. Trends & Developments in BioProcess Technology. 15(2):12-21
  8. Siegel, W., and Foster, L. (2013) Fetal Bovine Serum: The Impact of Geography. BioProcessing J. Trends & Developments in BioProcess Technology. 12(3):28-30.
  9. Versteegen, R., et al. (2016) Gamma Irradiation of Animal Serum: An Introduction. BioProcessing J. Trends & Developments in BioProcess Technology. 15 (2):5-11
  10. Versteegen, R. (2017) Serum: A Better Characterized Biological.. American Pharmaceutical Review 20 (5)