CITATIONS AND PUBLICATIONS

    1. Beurg, M., et al. (1999) Differential Regulation of Skeletal Muscle L-type Ca2+ Current and Excitation-contraction Coupling by the Dihydropyridine Receptor Beta Subunit. Biophys. J., 76(4): 1744-1756.
    2. Bultynck, G., et al. (2001) Characterization and Mapping of the 12kda Fk506-binding Protein (Fkbp12)-binding Site on Different Isoforms of the Ryanodine Receptor and the Inositol 1,4,5-trisphosphate Receptor. Biochem. J., 354: 413-422.
    3. Christman, S. A., et al. (2005) Chicken Embryo Extract Mitigates Growth and Morphological Changes in a Spontaneously Immortalized Chicken Embryo Fibroblast Cell Line. Poultry Science, 84(9):1423–1431.
    4. Erbay, E. and Chen, J. (2001) The Mammalian Target of Rapamycin Regulates C2C12 Myogenesis via a Kinase-Independent Mechanism. J. Biol. Chem., 276(39): 36079-36082.
    5. Hagiwara, Y., et al. (1981) Chick Embryo Extract, Muscle Trophic Factor and Chick and Horse Sera as Environments for Chick Myogenic Cell Growth. Develop., Growth and Differ., 23(3): 249-254 doi:10.1111/j.1440-169X.1981.00249.x
    6. Hennige, A. M., (2008) Fetuin-A Induces Cytokine Expression and Suppresses Adiponectin Production. PLoS One, 3(3): e1765 DOI: 10.1371/journal.pone.0001765.
    7. Jat, P.S., et al. (1991) Direct Derivation of Conditionally Immortal Cell Lines from an H-2Kb-Tsa58 Transgenic Mouse. PNAS, 88(12): 5096-5100.
    8. Kessler, P.D., et al. (1996) Gene Delivery to Skeletal Muscle Results in Sustained Expression and Systemic Delivery of a Therapeutic Protein. PNAS, 93(24): 14082-14087.
    9. Krützfeldt, J., et al. (2000) Insulin Signalling and Action in Cultured Skeletal Muscle Cells From Lean Healthy Humans With High and Low Insulin Sensitivity. Diabetes, 49(6): 992-998.
    10. Lecce, J. G., et al. (1953) Chick Embryo Extract, and Enrichment for Certain Strains of Pleuropneumonia Like Organisms Isolated from Man. J. Bacteriol., 66(5): 622–623.
    11. Kita, K., et al. (1998) Influence Of Chicken Embryo Extract On Protein Synthesis Of Chicken Embryo Depends On Cell Density. AJAS, 11(6): 713-717.
    12. Mann, C.J., et al. (2001) Antisense-Induced Exon Skipping and Synthesis of Dystrophin in the Mdx Mouse. PNAS, 98(1): 42-47.
    13. <Morgan, J.E., et al. (1994) Myogenic Cell Lines Derived from Transgenic Mice Carrying a Thermolabile T Antigen: A Model System for the Derivation of Tissue-Specific and Mutation-Specific Cell Lines. Dev Biol., 162(2): 486-498.
    14. Mu, X., et al. (2013) Chick Embryo Extract Demethylates Tumor Suppressor Genes in Osteosarcoma Cells. Clin Orthop Relat Res., [Epub ahead of print]
    15. Muses, S., et al. (2011) A New Extensively Characterised Conditionally Immortal Muscle Cell-Line for Investigating Therapeutic Strategies in Muscular Dystrophies. PLoS One, 6(9): e24826 DOI: 10.1371/journal.pone.0024826.
    16. Pajtler, K., et al. (2010) Production of Chick Embryo Extract for the Cultivation of Murine Neural Crest Stem Cells. J. Vis. Exp. (45), e2380, doi:10.3791/2380.
    17. Slater, C.R. (1976) Control of Myogenesis In Vitro by Chick Embryo Extract. Dev. Biol., 50(2): 264–284.
    18. Stefan, N., et al. (2007) Genetic Variations in PPARD and PPARGC1A Determine Mitochondrial Function and Change in Aerobic Physical Fitness and Insulin Sensitivity during Lifestyle Intervention. J. Clin. Endocrinol. Metab., 92(5): 1827– 1833.
    19. Suzuki, K., et al. (2001) Intracoronary Infusion of Skeletal Myoblasts Improves Cardiac Function in Doxorubicin-Induced Heart Failure. Circulation, 18:104 (12 Suppl 1) I213-I217 doi: 10.1161/ hc37t1.094929.
    20. Turbow, M.M. (1966) Trypan Blue Induced Teratogenesis of Rat Embryos Cultivated In Vitro. J. Embryo. Exp. Morphol. 15(3): 387-395.
    21. Weigert, C., et al. (2004) Palmitate, but Not Unsaturated Fatty Acids, Induces the Expression of Interleukin-6 in Human Myotubes through proteasome-dependent Activation of Nuclear Factor-κB. J. Biol. Chem., 279(23): 23942–23952.
    22. Yablonka-Reuveni, Z. (1995) Myogenesis in the Chicken: The Onset of Differentiation of Adult Myoblasts is Influenced by Tissue Factors. Basic and Applied Myology, 5(1):33.
    23. Zimmermann, W. H., et al. (2002) Tissue Engineering of a Differentiated Cardiac Muscle Construct. Circ. Res, 90(2): 223-230 DOI: 10.1161/hh0202.103644.

 

  1. Cánovas, D., and Bird, N., (2012) Letter: Human AB serum as an alternative to fetal bovine serum for endothelial and cancer cell culture. Altex, 29(4): 426-428.
  2. Chimenti, I., et al. (2014) Serum and supplement optimization for EU GMP-compliance in cardiospheres cell culture. J. Cell. Mol. Med. 18(4): 624–634.
  3. Dahl, J. A., et al. (2008) Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. Int. J. Dev. Biol., 52(8): 1033–1042.
  4. Jung, S., et al. (2012) Ex Vivo expansion of human mesenchymal stem cells in defined serum-free media. Stem Cells Int., 2012 Article ID 123030, doi:10.1155/2012/123030.
  5. Kocaoemer, A., et al. (2007) Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of Mesenchymal Stem Cells from adipose tissue. Stem Cells, 25(5): 1270-1278.
  6. Le Blanc, K., et al. (2007) Generation of immunosuppressive Mesenchymal Stem Cells in allogeneic Human Serum. Transplantation, 84(8): 1055-1059.
  7. Lindroos, B., et al. (2010) Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Eng. Part A, 16(7): 2281-2294, DOI: 10.1089/ten.tea.2009.0621.
  8. Paloni, A., et al. (2009) Selection of CD271+ cells and human AB serum allows a large expansion of mesenchymal stromal cells from human bone marrow. Cytotherapy, 11(2): 153-162.
  9. Qasim, W., et al. (2017) Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine. 9(374), DOI: 10.1126/scitranslmed.aaj2013
  10. Shahdadfar, A., et al. (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells, 23(9): 1357–1366.
  11. Stute, N., et al. (2004) Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp. Hematol., 32(12): 1212–1225.
    1. Astori, G., et al. (2016) Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Research & Therapy. 7:93
    2. Azouna, N. B., et al. (2012) Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res Ther., 3(1):6.
    3. Barsotti, M. C., et al. (2013) Effect of platelet lysate on human cells involved in different phases of wound healing. PLOS, 8(12): e84753.
    4. Bieback, K., et al. (2009) Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cell, 27(9):2331-2341.
    5. Burnouf, T., et al. (2012) Human blood-derived fibrin releasates: Composition and use for the culture. Biologicals, 40: 21-30.
    6. Burnouf, T., et al. (2016) Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials, 76: 371-387.
    7. Capelli, C., et al. (2007) Human Platelet Lysate allows expansion and clinical grade production of mesenchymal stromal cells from small samples of bone marrow aspirates or marrow filter washouts. Bone Marrow Transplant, 40(8):785-791.
    8. Castegnaro, S., et al. (2011) Effect of platelet lysate on the functional and molecular characteristics of mesenchymal stem cells isolated form adipose tissue. Curr Stem Cell Res Ther., 6(2):105-114.
    9. Cholewa, D., et al. (2011) Expansion of adipose mesenchymal stromal cells is affected by human platelet lysate and plating density. Cell Transplant, 20(9):1409-1422.
    10. Doucet, C., et al. (2005) Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol., 205(2):228-236.
    11. Fazzina, R., et al. (2015) Culture of human cell lines by a pathogen-inactivated human platelet lysate. Cytotechnology, DOI 10.1007/s10616-015-9878-5.
    12. Fekete. N., et al. (2012) Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy, 2012; 14(5):540-554.
    13. Govindasamy, V., et al. (2011) Human platelet lysate permits scale-up of dental pulp stromal cells for clinical applications. Cytotherapy, 13(10):1221-1233.
    14. Hemeda, H., et al. (2013) Heparin concentration is critical for cell culture with human platelet lysate. Cytotherapy, 15(9):1174-1181.
    15. Hemeda, H., et al. (2014) Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy, 16(2):170-180.
    16. Henschler, R., et al. (2019) Human platelet lysate current standards and future developments. Transfusion, 9999;1–7. DOI: 10.1111/trf.15174
    17. Horn, P., et al. (2010) Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy, 12(7):888-898.
    18. Naaijkens, B.A., et al. (2012) Human platelet lysate as a fetal bovine serum substitute improves human adipose-derived stromal cell culture for future cardiac repair applications. Cell Tissue Res., 348(1):119-130.
    19. Rauch, C., et al. (2011) Alternatives to the use of fetal bovine serum: Human platelet lysates as a serum substitute in cell culture media. ALTEX, 28(4):305-316.
    20. Rauch, C., et al (2014) Human Platelets successfully replace fetal bovine serum in adipose-derived adult stem cell culture. J Advanced Biotech & Bioengineering, 2 (1).
    21. Ruggiu, A., et al. (2013) The effect of Platelet Lysate on osteoblast proliferation associated with a transient increase of the inflammatory response in bone regeneration. Biomaterials, 34: 9318-9330.
    22. Schallmoser, K., et al. (2007) Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion, 47(8):1436-1446.
    23. Schallmoser, K., and Strunk, D. (2009) Preparation of Pooled Human Platelet Lysate (pHPL) as an Efficient Supplement for Animal Serum-Free Human Stem Cell Cultures. Journal of Visualized Experiments, http://www.jove.com/details.php?id=1523
    24. Strandberg, G., et al. (2016) Standardizing the freeze-thaw preparation of growth factors from platelet lysate. Transfusion DOI:10.1111/trf.13998
    25. Suri, K., et al. (2014) Platelet Lysate as a replacement for fetal bovine serum in limbal stem cell cultures: Preliminary results. Investigative Ophthalmology & Visual Science, 55: 511.
    26. Trojahn Kølle, S.F., et al. (2013) Pooled human platelet lysate versus fetal bovine serum-investigating the proliferation rate, chromosome stability and angiogenic potential of human adipose tissue-derived stem cells intended for clinical use. Cytotherapy, 15(9):1086-1097.
    27. Walenda, G., et al. (2012) Human platelet lysate gel provides a novel three dimensional-matrix for enhanced culture expansion of mesenchymal stromal cells. Tissue Eng Part C Methods, 18(12):924-934.
    1. Paranjape, S. (2004) Goat serum: an alternative to fetal bovine serum in biomedical research. Indian J Exp Biol. 42(1):26-35.
    2. Dessels, C., et al. (2016) Making the Switch: Alternatives to Fetal Bovine Serum for Adipose-Derived Stromal Cell Expansion. Front Cell Dev Biol. 4:115
    1. Brown, S., et al (2018) Gamma Irradiation of Animal Serum: Maintaining the old Chain Throughout the Process. Bioprocessing J. Trends & Developments in Bioprocess Technology 17
    2. Cheever, M., Master, A., & Versteegen, R. (2017) A Method for Differentiating Fetal Bovine Serum from Newborn Calf Serum. Bioprocessing J. Trends & Developments in Bioprocess Technology 16.
    3. Croonenborghs, B., et al. (2016) Gamma Irradiation of Frozen Animal Serum: Dose Mapping for Irradiation Process Validation. Bioprocessing J. Trends & Developments in Bioprocess Technology. 15(3).
    4. Davis, D., and Drake Hirschi, S. (2014) Fetal Bovine Serum: What You Should Ask Your Supplier and Why. BioProcessing J. Trends & Developments in BioProcess Technology. 13 (1): 19-21
    5. Hawkes, P.W. (2015) Fetal bovine serum: geographic origin and regulatory relevance of viral contamination. Bioresources and Bioprocessing. 2(34):
    6. Nielsen, O. B., and Hawkes P. W. (2019) Fetal Bovine Serum and the Slaughter of Pregnant Cows: Animal Welfare and Ethics. BioProcessing J. Trends & Developments in Bioprocess Technology. 18
    7. Plavsic, M., et al. (2016) Gamma Irradiation of Animal Serum: Validation of Efficacy for Pathogen Reduction and Assessment of Impacts on Serum Performance. BioProcessing J. Trends & Developments in BioProcess Technology. 15(2):12-21
    8. Siegel, W., and Foster, L. (2013) Fetal Bovine Serum: The Impact of Geography. BioProcessing J. Trends & Developments in BioProcess Technology. 12(3):28-30.
    9. Versteegen, R., et al. (2016) Gamma Irradiation of Animal Serum: An Introduction. BioProcessing J. Trends & Developments in BioProcess Technology. 15 (2):5-11
    10. Versteegen, R. (2017) Serum: A Better Characterized Biological.. American Pharmaceutical Review 20 (5)